18-819F: Introduction to Quantum Computing 47-779/47-785: Quantum Integer Programming & Quantum Machine Learning

Novel Approaches to Solving Ising Models

Lecture 17 2021.11.02

Agenda

- Refresher of Simulated Annealing
- Benchmarking exercise
- Conventional vs. Natural Computing
- Solving the 2D regular Ising Problem
 - Graphic Processing Units
 - Tensor Processing Units
 - Field-programmable gate arrays

- Solving general Ising models
 - Graphic Processing Units
 - Simulated Bifurcation Machine
 - CMOS
 - Digital Annealers

Simulated Annealing

Concept coming from annealing in metallurgy

Slow cooling allows for perfect crystals (minimizing energy)

Start at effective high temperature and gradually decrease the temperature by increments until is slightly above zero

Interesting behavior:

- "Divide-and-conquer": Big features are solved early in the search and small features later while refining
- Ability to escape local-minima
- Guaranteed to reach lowest energy if temperature is lowered slowly enough

 Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing.Science,220(4598):671–680, 1983.
 https://www.esrf.eu/news/general/phase-change-materials/index_html
 Alan Lang Chapter 8 Strain hardening and annealing.

Ising Model – Monte Carlo, Physics Inspired Methods

Ising model as Markov-Chain

The immediate probability $P(\boldsymbol{\sigma}^c, \beta) = e^{-\beta H(\boldsymbol{\sigma}^c)}/Z(\beta)$ of transitioning to a future state $\boldsymbol{\sigma}^f$ depends only in the current state $\boldsymbol{\sigma}^c = [\sigma_1^c, \cdots, \sigma_N^c]$

Given single flip dynamics, we can jump from any state to another.

Metropolis-Hastings Monte Carlo Algorithm for Ising Models

- 1) Start with a known configuration, $\boldsymbol{\sigma}^{i} = [\sigma_{1}^{i}, \dots, \sigma_{N}^{i}]$ corresponding energy $H(\boldsymbol{\sigma}^{i})$ and temperature value $T = (k_{B}\beta)^{-1}$
- 2) Randomly change the configuration
 - Flip some spins $\sigma^i \rightarrow \sigma^j$
- 1) Calculate new energy value $H(\sigma^j)$
- 2) Compare to energy at previous position
 - If , $H(\boldsymbol{\sigma}^j) < H(\boldsymbol{\sigma}^i)$ keep new position
 - If, $H(\sigma^{j}) > H(\sigma^{i})$ keep new position if Boltzmann factor for transition satisfies $\exp\left[-\frac{H(\sigma^{i})-H(\sigma^{i})}{k_{B}T}\right] \ge \operatorname{Rand}[0,1]$
- 1) Repeat 2) 4) K times

ctrical & Computer

number of iterations

[1] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing.Science,220(4598):671–680, 1983.

Benchmarking Exercise

Let's go to Colab

https://colab.research.google.com/github/bernalde/QuIPML/blob/ma ster/notebooks/Notebook%204%20-%20Benchmarking.ipynb

Conventional (Von Neumann) vs. Natural Computing

2D Ising model - Simple yet interesting

Main concern: How to parallelize Monte Carlo Simulations Arbitrary Ising - Applicable but hard!

Main concern: How to actually solve NP-Hard Problem

[1] A 20k-Spin Ising Chip to Solve
 Combinatorial Optimization Problems With
 CMOS Annealing. Yamaoka, Yoshimura,
 Hayashi, Okuyama, Aoki, and Mizuno
 [2] https://arxiv.org/pdf/1807.10750.pdf

6

Specialized hardware for solving Ising/QUBO

GPUs and TPUs

Digital annealers

Complementary metal-oxide semiconductors

Coherent Ising Machines (CIM)

Fiber beamsplitter

[1]https://arxiv.org/pdf/1807.10750.pdf [2]https://arxiv.org/pdf/1903.11714.pdf

[3]https://arxiv.org/pdf/1806.08815.pdf

[4]https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds [5]https://science.sciencemag.org/content/sci/354/6312/614.full.pdf

TEPPER

7

Graphical Processing Units (GPU)

CPU vs GPU

CPU	GPU
Central Processing Unit	Graphics Processing Unit
Several cores	Many cores
Low latency	High throughput
Good for serial processing	Good for parallel processing
Can do a handful of operations at once	Can do thousands of operations at once

duck-sized horses

OR

Specialized, electronic circuit designed to rapidly manipulate and alter memory to accelerate the creation of images.

Their highly parallel structure makes them more efficient than general purpose central processing units (CPUs) for algorithms that process large blocks of data in parallel.

[1] https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
[2] https://www.quora.com/Would-you-rather-fight-100-duck-sized-horses-or-one-horse-sized-duck
[3] https://en.wikipedia.org/wiki/Graphics_processing_unit

horse-sized duck

Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm

- 1: input: (M, N, \mathbf{S})
- 2: initialize all σ_i in **S**
- 3: for sweep-id in $\{1, 2, ..., M\}$ do
- 4: for σ_i in S do
- 5: $\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))$ based on (2)
- 6: end for
- 7: randomly choose and flip N spin glasses in **S**
- 8: decrease N
- 9: end for

Algorithm 2 GPU Simulated Annealing method for Ising model

```
input: (F_p, \mathbf{S})

initialize ALL \sigma_i in \mathbf{S}

while F_p > 0 do

for all \sigma_i \in \mathbf{S} in parallel do

\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))

flip \sigma_i with probability F_p

end for

reduce F_p

end while
```


[1] https://arxiv.org/pdf/1807.10750.pdf

GPU for 2D Ising Models

Figure 1: (Color online) The spin lattice is processed by a variable number of blocks (a), where each block runs a variable number of threads (b). The threads update the spin lattice in two steps, A and B, using two kernel invocations (c).

Perform the Ising Update via easily parallelizable operations.

	Spinflips per μ s	Relative speed
CPU simple	26.6	0.11
CPU multi-spin coding	226.7	1.00
shared memory	4415.8	19.50
shared memory (Fermi)	8038.2	35.46
multi-spin unmodified	3307.2	14.60
multi-spin coding on the fly	5175.8	22.80
multi-spin coding linear	7977.4	35.20

Figure 2: (Color online) (a) The way a kernel processes a 4 × 4 meta-spin. (b) Spins are extracted into shared memory and an update pattern is created (c). (d) Afterwards, the new spins are obtained using the update pattern (Spins on blue sites will be flipped), and written back to global memory. [1] https://arxiv.org/pdf/1007.3726.pdf

Correctness of GPU's results

It (sort of) matches Onsager analytical prediction!

Universities Space Research Association

11

Parallelizing GPUs

Figure 4: (Color online) (a) Each GPU processes a "meta-spin" lattice of size $N = n^2$. The lattices are aligned on a super-lattice, and the outer borders are connected via periodic boundary conditions. In this example, 4 GPUs process a system of $2^2 \cdot N$ spins. (b) A meta-spin update needs the 4 nearest neighbor meta-spins. On the borders of a lattice, each GPU needs the spin information of the neighboring lattices. The border information has to be passed between the GPUs. In our implementation this is done by using 8 neighbor arrays.

Figure 5: (Color online) Cluster performance for various system sizes (per GPU). For more than one GPU, spin flip performance scales nearly linearly with the amount of GPUs. Again, optimal performance is reached at a lattice size of about 4096 × 4096 per GPU. Using 64 GPUs, a performance of 206 spinlings per nanoscenod can be achieved on a 8000.000 × 800.0000 lattice.]

Using 64 GPUs performance of 206 spinflips per **nanosecond** can be achieved on a 800,000x800,000 lattice

[1] https://arxiv.org/pdf/1007.3726.pdf

Tensor Processing Units (TPU)

Cloud TPU v2 180 teraflops 64 GB High Bandwidth Memory (HBM)

Cloud TPU v2 Pod 11.5 petaflops 4 TB HBM 2-D toroidal mesh network

Cloud TPU v3 420 teraflops 128 GB HBM

32 TB HBM

2-D toroidal mesh network

Machine learning performance and benchmarks

ResNet-50 Training Cost Comparison

Tensor Processing Unit (**TPU**) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google specifically for neural network machine learning, particularly using Google's own TensorFlow software.

[1] https://en.wikipedia.org/wiki/Tensor_Processing_Unit#/media/File:Tensor_Processing_Unit_3.0.jpg [2] https://cloud.google.com/tpu

13

Universities Space Research Association

TPU for 2D Ising

Checkerboard Algorithm: break lattice in sublattices and group equal spins to easily operate on them

Figure 3: A 2-d checkerboard: (1) Original checkerboard: on the left, the 16×16 board is split into a 4×4 grid of 4×4 sub-lattices, i.e., it is represented by a [4, 4, 4, 4] tensor, where [l, k, :, :] is the sub-lattice at [l, k] of the grid; on the right, the sub-lattice is zoomed in and the indices of its spin sites are shown; (2) Reorganized checkerboard: one the left, each 4×4 sub-lattice is reorganized by 4 "compact" 2×2 sub-lattices; on the right, 4 "compact" 2×2 sub-lattices are zoomed in and their original indices from the 4×4 sub-lattice are shown. In general, such alternate coloring of black and white can be extended to lattices with any dimensions.

Universities Space Research Association 14

Correctness of TPU's results

Onsager analytical

SR

[1] https://arxiv.org/pdf/1903.11714.pdf

Universities Space Research Association

15

Efficiency of TPU cluster

lattice size n^2	(flips/ns)	(nJ/flip)]
$(20 \times 128)^2$	8.1920	12.2070	
$(40 \times 128)^2$	9.3623	10.6811	13.0
$(80 \times 128)^2$	12.3362	8.1062	<u>ه</u> ^{12.0}
$(160 \times 128)^2$	12.8266	7.7963	
$(320 \times 128)^2$	12.9056	7.7486	
$(640 \times 128)^2$	12.8783	7.7650	8.0
GPU in [23, 3]	7.9774	_	128 128 128 128 128 128 128 128 128 128
Nvidia Tesla V100	11.3704	21.9869	20X
FPGA in [20]	614.4	_	lattice size

Better performance and less energy consumption than Nvidia GPUs, until... (next slide)

Really far from Field-programmable gate array (FPGA)! (a couple slides more)

Code available in Github and replicable results (with a Google Cloud account) <u>https://github.com/google-research/google-</u>

research/blob/master/simulation_research/ising_model/ising_mcmc_tpu.ipynb

[1] https://arxiv.org/pdf/1903.11714.pdf

Nvidia's Rebuttal!

Table 2: Flips per nanosecond obtained by the optimized multi-spin code on a single Tesla V100-SXM card with different lattice sizes, requiring an amount of memory ranging from 2MB to 30GB. For comparison purposes, the table also reports the best timings with 1 and 32 TPUv3 cores from [7], and with 1 FPGA from [8].

Better performance than TPUs

Still far from Field-programmable gate array (FPGA)! (next slide)

Figure 5: Steady state magnetization measures obtained with the multi-spin code for lattice sizes 512^2 , 1024^2 , 2048^2 , and 4096^2 . The solid vertical line marks the critical temperature value $T_c = 2.269185$.

And of course, they compare against Onsager

Code available in Github and replicable results https://github.com/NVIDIA/ising-gpu

[1] https://arxiv.org/pdf/1906.06297.pdf

Field-programmable gate array (FPGA)

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term "field-programmable"... Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools. [1] https://en.wikipedia.org/wiki/Field-programmable_gate_array

[2] https://arxiv.org/pdf/1602.03016.pdf

FPGA for 2D Ising Models

Checkerboard Algorithm diagram

Platform	# updated spins	Ratio
CPU	62	1
Single GPU	7977	129
Previous FPGA	94127	1518
64 GPUs	206000	3322
Our FPGA	614400	9909

Number of spinflips per microsecond for the 1024x1024 lattice

Circuit Diagram Single Spin

Circuit Diagram Random Number Generation

[1] https://arxiv.org/pdf/1602.03016.pdf

Correctness of FPGA's results

[1] https://arxiv.org/pdf/1602.03016.pdf

20

Working with general Ising Models

Main concern: How to actually solve NP-Hard Problem?

Using a natural computing approach you would ideally use Adiabatic Quantum Computing, and realistically Quantum Annealing

Schrödinger equation

$$i\eta \frac{d}{dt} |\psi\rangle = H |\psi\rangle$$
 $H(\sigma_1, \sigma_2, \cdots, \sigma_n) = -\frac{1}{2} \sum_i \sum_j J_{i,j} \sigma_i \sigma_j + \sum_i h_i \sigma_i$

One cannot efficiently solve this equation using classical computers (if so, why would we need quantum computers after all!)

The issue then relies on (classically) Simulating Quantum Annealing

[1] A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing. Yamaoka, Yoshimura, Hayashi, Okuyama, Aoki, and Mizuno [2] https://arxiv.org/pdf/1807.10750.pdf

Graphical Processing Units

Algorithm 2 GPU Simulated Annealing method for Ising model

```
input: (F_p, \mathbf{S})

initialize ALL \sigma_i in \mathbf{S}

while F_p > 0 do

for all \sigma_i \in \mathbf{S} in parallel do

\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))

flip \sigma_i with probability F_p

end for

reduce F_p

end while
```

Electrical & Computer

TEPPER

"One may notice that since each spin glass may have a different number of neighbors, then the threads will not be perfectly load

[1] https://arxiv.org/pdf/1807.10750.pdf Cook, Zhao, Sato, Hiromoto

GPU Performance

Days		Seconds
# edges	CPLEX cut	GPU cut (%accuracy)
9999	9473	8884 (93.78%)
14999	13357	12776(95.65%)
24998	20206	19981(98.88%)
49995	35248	36228(100.29%)
39998	33605	32914(97.94%)
59997	46371	46510(100.29%)
99995	70566	72009(102.04%)
199990	128448	131930(102.71%)
249995	176556	179391(101.60%)
374993	248505	255078(102.64%)
626988	392912	400540(101.94%)
1249975	741709	751050(101.25%)

FEPPER

Simulated Bifurcation Machine

"The method in [previous slide] ignores the data dependencies to implement parallel computation on fully connected spin models. Since the modified algorithm in [previous slide] does not follow the mathematical model that the Quantum Monte Carlo is based on, the output of the simulation could deviate from the optimum."

How can we efficiently simulate quantum annealing? We can take a classical approximation

Equations model the bifurcation (Anil's lecture)

$$H_{SB}(\vec{x}, \vec{y}, t) = \sum_{i=1}^{N} \frac{\Delta}{2} y_i^2 + V(\vec{x}, t)$$
$$V(\vec{x}, t) = \sum_{i=1}^{N} \left[\frac{K}{4} x_i^4 + \frac{\Delta - p(t)}{2} x_i^2 \right] - \frac{\xi_0}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} x_i x_j$$
$$\frac{\partial x_i}{\partial t} = \frac{\partial H_{SB}}{\partial y_i} = \Delta y_i$$
$$\frac{\partial y_i}{\partial t} = -\frac{\partial H_{SB}}{\partial x_i} = -[Kx_i^2 - p(t) + \Delta] x_i + \xi_0 \sum_{j=1}^{N} J_{i,j} x_j$$

[1] Waidyasooriya, Hasitha, and Masanori Hariyama. "Highly-parallel FPGA accelerator for simulated quantum annealing." IEEE Transactions on Emerging Topics in Computing (2019).

[2] Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.

Simulated Bifurcation Machine

• Authors implemented algorithm in FPGA to solve up to 20,000 nodes fully connected graphs

• Authors implemented algorithm in CPU and GPU to solve up to 1'000,000 nodes fully connected graphs

Dots: CPUDots: Cutoff valueLines: GPULine: 10-run avg.

GPU Version Made available through TOSHIBA aWS

Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.
 http://www.toshiba-sol.co.jp/en/pro/sbm/index.htm

3D Ising Model

CMOS Static RAM (SRAM) Circuits

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

Each Spin has 5 neighbors (Up, Down, Right, Left, Front)

Use low voltage to induce random errors in SRAM and jump local minima

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

Items	Value
Number of spins	20k (80 × 256)
Process	65 nm
Chip area	$4 \times 3 = 12 \text{ mm}^2$
Area of spin	$11.27 \times 23.94 = 270 \mu m^2$
	260k bits
Number of	Spin value: 1 bit
SRAM cells	Interaction factor: 2 bit \times 5 = 10 bits
	External magnetic coefficient: 2 bits
Memory IF	100 MHz
Interaction speed	100 MHz
Operating current	Write: 2.0 mA
of core circuits	Read: 6.0 mA
(1.1 V)	Interaction: 44.6 mA

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

Easily Parallelizable and manageable Same Idea also implemented in FPGA 1st replica King Unit cell useful for both spins Spin Spin and random number generation 2nd replica Delay array array spin unit spin unit unit M-th replica spin spin spin Item This work unit unit unit SRAM cell Spin (digital bit) spin unit spin spin unit unit SRAM cell (digital bit) Interaction coefficient Logic circuits RNG HITACH (digital bit, asymmetry) Now available through • Easy: Scalability CMOS scaling (over 10k spins) Hitachi CMOS Hitachi CMOS · Easy: Scalability digital IF can be used Annealer [15], [26] Annealer [16], [26] CMOS circuits Annealing

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." [2] Okuyama, Takuya, Masato Hayashi, and Masanao Yamaoka. "An Ising computer based on simulated quantum annealing by path integral Monte Carlo method."

[3] https://annealing-cloud.com/en/about/cmos-annealingmachine.html

Playing with Hitachi's CMOS

Let's go to this interactive interface of the CMOS device from Hitachi <u>https://annealing-cloud.com/en/play/ising-editor.html</u>

Digital Annealers

CMOS Implementation of Ising solution method Fully connected 1024 nodes 16-bit precision vs. 4-bit precision D-Wave

"For obtaining exact solutions of small-size problems, the machine called "Digital Annealer" may be the fastest so f

[1] https://arxiv.org/pdf/1806.08815.pdf

[2] https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
 [3] Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.

32

SRA Universities Space Research Association

Digital Annealers

Algorithm 1 Simulated Annealing (SA)		Algo	rithm 2 The Digital Annealer's Algorithm
1: for each run do	Arbitrary start	▶ 1: ini	tial_state \leftarrow an arbitrary state
2: initialize to random initial state	ial fields not required to be calculated	2: fo	r each run do
3: for each temperature do	lai neius neere ja	3:	initialize to initial_state
4: for each MC sweep at this temperature do		4:	$E_{\text{offset}} \leftarrow 0$
5: for each variable do	Donall	5:	for each MC step (iteration) do
6: propose a flip	<u>rarallel-trial</u>	6:	if due for temperature update, update the temperature
7: if accepted, update the state and effective fields	boost acceptance probability	7:	\rightarrow for each variable <i>j</i> , in parallel do
8: end for	resolutility	8:	propose a flip using $\Delta E_i - E_{\text{offect}}$
9: end for		9:	if accepted, record
10: update the temperature	D.	10:	end for
11: end for	ynamic o co	11:	if at least one flip accepted then
12: end for	Helps survey off-set of	12:	choose one flip uniformly at random amongst them
	barrien barrie	13:	update the state and effective fields, in parallel
	acis at short, harm	14:	$E_{\text{offset}} \leftarrow 0$
		15:	else
		16:	$\longrightarrow E_{\text{offset}} \leftarrow E_{\text{offset}} + \text{offset_increase_rate}$
		17:	end if
		18:	end for
		19: en	ld for

[1] https://arxiv.org/pdf/1806.08815.pdf

[2] https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds

Parallel Tempering

Alg	gorithm 1 Simulated Annealing (SA)	Al (P)	gorithm 3 Parallel Tempering with Isoenergetic Cluster Moves (7+ICM)
1:	for each run do	1:	initialize all replicas with random initial states
2:	initialize to random initial state	2:	for each MC sweep do
3:	for each temperature do	3:	for each replica, for each variable do
4:	for each MC sweep at this temperature do	4:	propose a flip
5:	for each variable do	5:	if accepted, update the state and effective fields
6:	propose a flip	6:	end for
7:	if accepted, update the state and effective fields	7:	for each pair of sequential replicas do
8:	end for	8:	propose a replica exchange
9:	end for	9:	if accepted, swap the temperatures between the replicas
10:	update the temperature	10:	end for
11:	end for	11:	perform ICM update, swapping the states of a cluster of variables that
12:	end for		have opposite states in the two replicas; update the states and the effective
00	l of having a single state you have several replice	0 10	neius for both replicas

- Instead of having a single state you have several replicas 12: end for
- Then the flips can be done among replicas
- It can be implemented in the Digital Annealer
- Additionally: There can be cluster updates (flip more than one spin if they are "connected")
 - Similar to Anil's intuition on the Swendsen-Wang Algorithm

https://arxiv.org/pdf/1806.08815.pdf

https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds

Digital Annealing v Simulated Annealing v Parallel Tempering

Fully connected instances

Digital Annealer Wins

ectrical 🞸 Computer

Sparse instances 2D-Bimodal 2D-Sparse 5 - DA (80th) 1 DA (80th SA (50th 1 SA (80th B 1 SA (80th ₫ - ₫ PT+ICM (80th - PT+ICM (50th) ₫ -₫ PT+ICM (80t - PT+ICM (50th) PTDA (50th) PTDA (50th) PTDA (80th

64 144 256

400

• DA Digital Annealer

400

- SA Simulated Annealing
- PT(+ICM) Parallel Tempering (+Isoenergetic Cluster Moves)
- PTDA Parallel Tempering Digital Annealer
 Parallel Tempering Wins

[1] https://arxiv.org/pdf/1806.08815.pdf

(S) SL

64 144 256

[2] S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Troyer, Optimized simulated annealing for Ising spin glasses, Comput. Phys. Commun. 192, 265 (2015)

900

TEPPER

Digital Annealers

Quantum Computing Challenge Series

СН тсо	Quantum Computing Challenge Series - Max Cut Marathon Match Ended Apr 04 Marathon Match	\$11,500 Purse
СН	Quantum Computing Learning Challenge #3 - Max Cut	\$250
тсо	Ended Aug 04 Python Data Science Other	Purse
СН	Quantum Computing Learning Challenge 2 - Scheduling	\$250
тсо	Ended Feb 28 Python Data Science Other	Purse
СН	Quantum Computing Learning Challenge #1 - Solve Sudoku Instantly	\$250
тсо	Ended Feb 14 Algorithm Python Data Science +1	Purse

[1] https://arxiv.org/pdf/1806.08815.pdf

[2] https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds [3] https://tc3-japan.github.io/DA_tutorial/index.html

Digital Annealer v Application-specific integrated circuit v FPGA v GPU

	Fujitsu Digital Annealer [25]	Hitachi CMOS Annealer [15], [26]	Hitachi CMOS Annealer [16], [26]	This work
Maximum number of spins	8192	61,952	6,400	32,768
Type of coupling	Total coupling	King graph	King graph	Total Coupling
Number of couplings	67 million	0.37 million	0.4 million	1 billion
Computation	64-bit fixed-point	not mentioned	8-bit fixed point	32-bit floating-point
Implementation	ASIC	ASIC	FPGA	2-FPGA connected via fiber

Waidyasooriya, Hasitha Muthumala, and Masanori Hariyama. "A GPU-Based Quantum Annealing Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism."
 Waidyasooriya, H.M., Hariyama, M., Miyama, M.J. et al. OpenCL-based design of an FPGA accelerator for quantum annealing simulation.
 Waidyasooriya, Hasitha Muthumala, and Masanori Hariyama. "Highly-Parallel FPGA Accelerator for Simulated Quantum Annealing"

Coherent Ising Machines

MASOLV

NEWS: 100,000 Spins

Fig. 3. MAX CUT score as a function of computation time obtained with the CIM (orange line) and SA (blue line). The data points exhibit the scores evaluated at the intermediate steps in the CIM and SA computation. The dotted line denotes the score obtained with SG (10,759,955).

Fig. 6. Histograms of MAX CUT score with CIM and SA. The vertical dashed line shows the SG score (10,759,955).

SCIENCE ADVANCES | RESEARCH ARTICLE

COMPUTER SCIENCE

100,000-spin coherent Ising machine

Toshimori Honjo¹*, Tomohiro Sonobe², Kensuke Inaba¹, Takahiro Inagaki¹, Takuya Ikuta¹, Yasuhiro Yamada¹, Takushi Kazama³, Koji Enbutsu³, Takeshi Umeki³, Ryoichi Kasahara³, Ken-ichi Kawarabayashi², Hiroki Takesue¹*

Alternatives available

	Fixstars Optigan	D-Wave 2000Q	Hitachi CMOS Annealing	Fujitsu Digital Annealer	Toshiba SBM
Calculation method	GPU	Quantum annealing	Digital circuit	Digital circuit	GPU
Maximum number of bits	Over 100,000	2,048 (16x16x8)	61,952 (352x176)	1,024/ 8,192	10,000
Coefficient parameter	Digital (32 / 64bit)	Analog (about 5bit)	Digital (3bit)	Digital (16/64 bit)	Digital (32bit)
Combined graph	Fully combined	Chimera graph	King Graph	Fully combined	Fully combined
Total number of combined conversion bits	65,536	64	176	1,024/ 8,192	1,000
API endpoint	Fixstars	D-Wave Cloud	Annealing Cloud Web	DA Cloud	AWS

Playing with several platforms

You can check one of the integrated software stack for several of these platforms developed in Japan at https://amplify.fixstars.com/en/

Translated version (but you cannot run it) <u>https://colab.research.google.com/github/bernalde/QuIPML/blob/master/notebooks/Notebook%208%20-%20Amplify%20Tutorials.ipynb</u>

Playing with several platforms

Explore quantum cloud solutions available on Azure Quantum

Azure Quantum assembles and curates some of the most compelling and diverse quantum resources available today from industry leaders—including optimization and quantum hardware solutions—for developers and customers across all industries.

Azure Quantum enables you to learn, build, and deploy impactful solutions at scale, helping you harness quantum computing and benefit from the latest innovations.

https://azure.microsoft.com/en-us/services/quantum/#features

