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Agenda

- Refresher of Simulated Annealing - Solving general Ising models

- Benchmarking exercise — Graphic Processing Units

. Conventional vs. Natural Computing — Simulated Bifurcation Machine
- CMOS

Solving the 2D regular Ising Problem
— Graphic Processing Units - Digital Annealers
— Tensor Processing Units

— Field-programmable gate arrays
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Simulated Annealing

Concept coming from annealing in metallurgy
Slow cooling allows for perfect crystals (minimizing energy)

Start at effective high temperature and gradually decrease the temperature by
increments until is slightly above zero

metastable
crystalline

Potential energy —

Normal coordinate —>

Interesting behavior: )

- “Divide-and-conquer’: Big features are solved early in the search and small ‘
features later while refining

- Ability to escape local-minima :

- Guaranteed to reach lowest energy if temperature is lowered slowly enough :

[1] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
annealing.Science,220(4598):671-680, 1983.

[2] https://www.esrf.eu/news/general/phase-change-materials/index_html

[3] Alan Lang Chapter 8 Strain hardening and annealing.
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Ising Model — Monte Carlo, Physics Inspired Methods

Ising model as Markov-Chain

The immediate probability P(c¢, 8) = e #H(e") / Z(3) of transitioning to a future state o’ depends only in the current
state ¢ = [0§, -+, 0%]

Given single flip dynamics, we can jump from any state to another. (E) Convergence of simulated annealing

atinit_temp

Metropolis-Hastings Monte Carlo Algorithm for Ising Models

1) Start with a known configuration, o’ = [o%,---,0%] corresponding energy
H(o') and temperature value T' = (kgf)
2) Randomly change the configuration
- Flip some spins ¢' — &
1) Calculate new energy value H(g”)
2) Compare to energy at previous position

Hill climbing .__

/

- If, H(e7) < H(o") keep new position rumber of erations
- f, H(o?) > H(o") keep new position if Boltzmann factor for transition

satisfies [ He) e

T ] > Rand |0, 1]

[1] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by

1) Repeat 2) - 4) K times simulated annealing. Science,220(4598):671-680, 1983.
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Benchmarking Exercise

Let’s go to Colab

https://colab.research.google.com/github/bernalde/QuiPML/blob/ma
ster/notebooks/Notebook%204%20-%20Benchmarking.ipynb

A i <y TEPPER ) NE———


https://colab.research.google.com/github/bernalde/QuIPML/blob/master/notebooks/Notebook%204%20-%20Benchmarking.ipynb

Carnegie Mellon University

Conventional (Von Neumann) vs. Natural Computing

Conventional . 77
computing > Repeated calculation by program '\ >
(Von Neumann || o - o L
N - D
architecture) | & : ST
€ | | Mapping to _ S
Natural > natural [ Convergence |>{Observation
computing phenomena
2D Ising model - Simple yet interesting Arbitrary Ising - Applicable but hard!
on =
= S
2 2
[1] A 20k-Spin Ising Chip to Solve
1 . 1 : . Combinatorial Optimization Problems With
Main concern: How to parallelize Monte Main concern: How to actually O b e
1 1 _ Hayashi, Okuyama, Aoki, and Mizuno
Carlo SlmU.lath]flS SOlVe NP Hard PI'Oblem [2] https://arxiv.org/pdf/1807.10750.pdf
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Specialized hardware for solving Ising/QUBO

Complementary metal-oxide semiconductors
GPUs and TPUs (CMOS)

Host Device
Grid 1

Block

Kemel | 0.0)
Bloc
0,19

1k-spin subarray
780 x 380 pum?

w
Grid 2 o =)
Kemel 2 g X Y 3
>B|0ck n ]
Thread | Thread | Thread | Thread | Thread

(0,0) (1,0) (2,00
Thread | Thread | Thread
|ten _fa.n jeb |
Thread | Thread | Thread
02 |02 |22

(3,00 (4,0)
Thread | Thread
3. 4.1

Thread | Thread
32 @2

Pump PPLN Waveguide

= 4

@ (LTI

SHG
Pulsed Laser 1 oios.:::.oisy
1560 nm

[1]https://arxiv.org/pdf/1807.10750.pdf
[2]https://arxiv.org/pdf/1903.11714.pdf < Fiber beamsplitter

[3]https://arxiv.org/pdf/1806.08815.pdf
[4]https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
[5]https://science.sciencemag.org/content/sci/354/6312/614.full.pdf
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Graphical Processing Units (GPU)

CPUvs GPU
CPU GPU NVIDIA.
GPUCLOUD
Central Processing Unit Graphics Processing Unit
Several cores Many cores
Low latency High throughput
Good for serial processing Good for parallel processing
Can do a handful of operations at ance Can do thousands of operations at once The Difference between a CPU and GPU

L o= 100

horse-sized duck gz duck-sized horses

ai

Specialized, electronic circuit designed to rapidly manipulate and alter memory to accelerate the
creation of images.

Their highly parallel structure makes them more efficient than general purpose central processing units
(CPUs) for algorithms that process large blocks of data in parallel.

[17 https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
[2] https://www.quora.com/Would-you-rather-fight-100-duck-sized-horses-or-one-horse-sized-duck
[3] https://en.wikipedia.org/wiki/Graphics_processing_unit

(() EEIeNCECIaIN&ECEOhn I{lltér A | ’ T E P P E R Universities Space Research Association



https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Algorithm

Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm

1: input: (M, N, S)

2: initialize all o; in S

3: for sweep-id in {1, 2, ..., M} do

4: for o; in S do

5 o; + argmin(H (o;)) based on (2)

6 end for

7 randomly choose and flip N spin glasses in S
8 decrease NV

9: end for

Algorithm 2 GPU Simulated Annealing method for Ising
model

input: (F},,S)
initialize ALL o; in S
while I, > 0 do
for all o; € S in parallel do
o; + argmin(H (o;))
flip o; with probability £,
end for
reduce F),
end while

Electrical & Computer q
ENGINEERING vy TEPPER
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Host

Kernel 1

Device
Grid 1
Block Block Block
- (0,0) (1,0) (2,0)
Block.-{'| Block [:| Block
(0.1) (L) |1 @D
| [oRaz
I == -
O Y —
Block (1,1)
Thread | Thread | Thread | Thread | Thread
(0,0) (1,0) (2,0) (3,0) (4,0)
Thread | Thread | Thread | Thread | Thread
(0,1) (1,1) (2,1) (3.1) (4,1)
Thread | Thread | Thread | Thread | Thread
0,2) (1,2) (2,2) (3.2) (4,2)

[17 https://arxiv.org/pdf/1807.10750.pdf
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GPU for 2D Ising Models

(a) (b) (c)
Block | Block Blo' Blo

0 1 2
[Thread|Thread
Block | Block | Block | Block L L

Update A

4 5 6 7 [Thread|Thread|Thread|Thread . . .
4 5 6 7
ST o s Py s Encode spins into threads and classify
8 9 10 11

BB e +1 and -1 in separate buckets
.

8 9 1 0 1 1 [Thread|Thread|Thread|Thread

12 13 14 15
Block | Block | Block | Block
12 13 14 15

Figure 1: (Color online) The spin lattice is processed by a variable number of blocks (a), where each block runs a variable number of threads (b).
The threads update the spin lattice in two steps, 4 and B, using two kernel invocations (c).

(a) (b) (c)

Perform the Ising Update via easily = Spinsin shared memory - Update pattern

; ; |

parallelizable operations. TR L
- » »
Spinflips per s Relative speed J |

CPU simple 26.6 0.11
CPU multi-spin coding 226.7 1.00 ()
shared memory 4415.8 19.50
shared memory (Fermi) 8038.2 35.46 XOR H:H =
multi-spin unmodified 3307.2 14.60 [ 1] :
multi-spin coding on the fly 5175.8 22.80 Old spins New spins
multi-spin coding linear 7977.4 35.20 e i e e e (Spine o e shes il e Aipe g on e s oot morbe [ 1] https://arxiv.org/pdf/1007.3726.pdf
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Correctness of GPU’s results

! kgTe = 2.269185 J
0.7 - ! N
0.6 - , i
0.5 - ! i
= 0.4 - ! .
0.31 N2=16 — ! i
n2=32 — !
0.2 - n/2 = 64 1 L
n/2 =128 —— !
N/2 = 256 =— .
0.1 ! -

I I I I I I | I | | I
2.245 2.250 2.255 2.260 2.265 2.270 2.275 2.280 2.285 2.290 2.295
keT [J]
Fig. 5. Binder cumulant U, in dependence of k;T for various numbers n of spins per row and column of the two dimensional square lattice Ising model. n/2
corresponds to the involved number of threads per block on the GPU implementation. The curves of the Binder cumulants for various system sizes N = n?

cross almost perfectly at the critical temperature derived by Onsager [3], which is shown additionally as a dashed line. In each temperature step, the
average was taken over 10" measurements.

It (sort of) matches Onsager analytical prediction!
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Parallelizing GPUs

(@ [ v (b) T |
Aj
neighbor border — 100.000 x 100.000
— 4.096 x 4.096
GPU GPU 4 — 512x512 -
- 2
o
9] =
0 &~ 1 3 8 [
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a ) . - |
- =3
) ( 5 g g
= il 4
% g §
GPU GPU 2ol i
- 0
e
2 w | A 3 £
=4
N
neighbor border . |
)
Figure 4: (Color online) (a) Each GPU processes a “meta-spin” lattice of size N = n?. The lattices are aligned on a super-lattice, and the outer 0 L1 1 I 1 | L
borders are connected via periodic boundary conditions. In this example, 4 GPUs process a system of 22 N spins. (b) A meta-spin update needs the 1 4 9 16 25 36 49 64
4 nearest neighbor meta-spins. On the borders of a lattice, each GPU needs the spin information of the neighboring lattices. The border information Number of GPUs

has to be passed between the GPUs. In our implementation this is done by using 8 neighbor arrays.

Figure 5: (Color online) Cluster performance for various system sizes (per GPU). For more than one GPU, spin flip performance scales nearly
linearly with the amount of GPUs. Again, optimal performance is reached at a lattice size of about 4096 x 4096 per GPU. Using 64 GPUs, a
| performance of 206 spinflips per nanosecond can be achieved on a 800.000 x 800.000 I;micc.|

Using 64 GPUs performance of 206 spinflips per
nanosecond can be achieved on a 800,000x800,000 lattice

[17 https://arxiv.org/pdf/1007.3726.pdf
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Tensor Processing Units (TPU)

Machine learning performance and benchmarks

ResNet-50 Training Cost Comparison

Cloud TPU v2 Cloud TPU v3 $100.00
180 teraflops 420 teraflops
64 GB High Bandwidth Memory (HBM) 128 GB HBM
$75.00
8 V100 GPUs 27 times faster training
Hraining daration: I at 38% lower cost with TPUs
$50.00 216 minutes for
90 epochs
1 full Cloud TPU v2
Pod training duration:
s - = $25.00 7.9 minutes for
Cloud TPU v2 Pod Cloud TPU v3 Pod @ epache
11.5 petaflops 100+ petaflops
$0.00

4TB HBM 32TB HBM
Google Cloud VM with 8 V100 GPUs Full Cloud TPU v2 Pod

2-D toroidal mesh network 2-D toroidal mesh network

Tensor Processing Unit (TPU) is an Al accelerator application-specific integrated circuit
(ASIC) developed by Google specifically for neural network machine learning, particularly

using Google's own TensorFlow software. - S -
[1] https://en.wikipedia.org/wiki/Tensor_Processing_Unit#/media/File: Tensor_Processing_Unit_3.0.jpg
[2] https://cloud.google.com/tpu
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TPU for 2D Ising

Checkerboard Algorithm: break lattice in sublattices and group equal spins to easily operate on them
s

HHas
1
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H
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ez FER
HEe e
s HES
I
2

S

Figure 3: A 2-d checkerboard: (1) Original checkerboard: on the left, the 16 x 16 board is split into
a 4 x 4 grid of 4 x 4 sub-lattices, i.e., it is represented by a [4, 4, 4,4] tensor, where [I, k,:,:] is the
sub-lattice at [l, k| of the grid; on the right, the sub-lattice is zoomed in and the indices of its spin
sites are shown; (2) Reorganized checkerboard: one the left, each 4 x 4 sub-lattice is reorganized
by 4 “compact” 2 x 2 sub-lattices; on the right, 4 “compact” 2 x 2 sub-lattices are zoomed in and
their original indices from the 4 x 4 sub-lattice are shown. In general, such alternate coloring of

black and white can be extended to lattices with any dimensions.
[1] https://arxiv.org/pdf/1903.11714.pdf
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Correctness of TPU’s results

Binder parameters on square lattices with different sizes using bfloat16
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The difference of Binder parameters using bfioat16 and float32
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m(T) on square lattices with different sizes using bfloat16

Lattice Size
-
. n=64
W -128
B n=26
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05

m(T) on square lattices with different sizes using float32

Lattice Size
W =32
. n=64
=128
B =26

n=512

0’5
TT,

Difference of m(T) using bfloat16 and float32

4|
I'-I Lattice Size
L‘l\ - n=32
B == - n=64
W =128
B r-2s6

I n=512

T,

€ ERGNEERRVG <y TEPPER

It (sort of) matches
Onsager analytical
prediction!

[1] https://arxiv.org/pdf/1903.11714.pdf
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Efficiency of TPU cluster

lattice size n* (flips/ns) | (nJ/flip)

(20 x 128)2 81020 | 12.2070

40 x 128)2 9.3623 10.6811 130
125

(80 x 128)2 12.3362 | 8.1062 120

(160 x 128)2 12.8266 | 7.7963 3o
(320 x 128)2 12.9056 | 7.7486 <95
(640 x 128)2 12.8783 | 7.7650 60
GPU in [23, 3] 7.9774 —
Nvidia Tesla V100 | 11.3704 | 21.9869
FPGA in [20] 614.4 — lattice size

20x128
40x128
80x128
160x128
320x128
640x128

Better performance and less energy consumption than Nvidia GPUs, until... (next slide)

Really far from Field-programmable gate array (FPGA)! (a couple slides more)

Code available in Github and replicable results (with a Google Cloud account)
https://github.com/gooqgle-research/google-
research/blob/master/simulation research/ising model/ising mcmc tpu.ipynb [1] https://arxiv.org/pdf/1903.11714.pdf
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Nvidia’s Rebuttal!

lattice size flip/ns
(1 x2048)° 23109 ' ' ! ! ' , ' H
(2 x 2048)* 31895 el i i :
(4 x 2048)*  379.27

fapins v lathce size Magnetization

(8% 2048) 41165 g2 [ ]
(16 x 2048)% 42044 & 300 | e .
(32 x 2048)* 42077 E
(64 % 2048)°  418.23 50 = ; : : ; . 4
(123 x 2048)*  417.53 - : : : : : : : : : f
| TPU%3 core in [7] 12.91 ;ﬁ & & ot &t g gt & : : ; |
32 TPUv3 cores in [7]  336.01 A A A |
FPGPE (l[}g-lzjl [EI ﬁ |4.4|:|1 number of gpins @ Onsager solution : : E
0 | 1 | 1 1
Table 2: Flips per nanosecond obtained by the optimized multi-spin code on a single Tesla V100-5XM card with 2 e e Y empaature 2 220 e
different lattice sizes, requiring an amount of memory ranging from 2ZMB to 30GB. For comparison purposes, the table Figure 5: Steady state magnetization measures obtained with the multi-spin code for lattice sizes 5122, 10247, 2487,

and 40967 The solid vertical line marks the critical temperature value 7,. = 2.269185

also reports the best timings with 1 and 32 TPUv3 cores from [7], and with 1 FPGA from [&].

And of course, they compare

Better performance than TPUs :
against Onsager

Still far from Field-programmable gate array (FPGA)! (next slide)

Code available in Github and replicable results https://github.com/NVIDIA/ising-gpu [1] htps://arxiv.org/pdf/1906.06297.pdf
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Field-programmable gate array (FPGA)

‘§ \ oend -, : carry in clk
1\‘\‘\.‘\ o0 g
L . 5
a_ | _3_LUT_ 1
b FA [ ’:'-.—)' out
; 1 mux In out :
<+ TR-LUTL DFF|
d 1 :
_ll 1
1
: logic cell.
carry out clk
i}
Fs>ro<t:essing I"tmr'fmn T m
m ystem nterfaces m
— . '
FTG256AGA1141 | =5 :
F4310423A A 7 Series
. o =2

T 2

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing — hence the
term "field-programmable”... Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic

design automation tools. [1] https://en.wikipedia.org/wiki/Field-programmable_gate_array
[2] https://arxiv.org/pdf/1602.03016.pdf
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FPGA for 2D Ising Models
N

o000

|Cursmiz)

LFSR32 f

Clk B
Ck A,

Checkerboard Algorithm diagram

Platform # updated spins | Ratio
CPU 62 1
Single GPU 7977 129
Previous FPGA 94127 1518
64 GPUs 206000 3322
Our FPGA 614400 9909

Number of spinflips per microsecond

for the 1024x1024 lattice Circuit Diagram Random [1] https://arxiv.org/pdf/1602.03016.pdf

Number Generation
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Correctness of FPGA's results

1.2

1.0 {==——_

0.4

0.2

0.0
1.4

[1] https://arxiv.org/pdf/1602.03016.pdf

It (sort of) matches Onsager analytical prediction!
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Working with general Ising Models

iJ
77

Conventional . .
computing ) Repeated calculation by program ', )
(Von Neumann | o o o L
architecture) & S I
< | | Mapping to _ S
Natural > natural [»{ Convergence [>{Observation -
computing phenomena

Using a natural computing approach you would ideally use
Adiabatic Quantum Computing, and realistically Quantum

Annealing

Schrodinger equation

1
lﬂ%‘%>=H|¢"> H(O‘l,o'zg-.. ,Jn) = _E Z;ﬁ,}maj + Zhidf

Main concern: How to actually
solve NP-Hard Problem?

i

One cannot efficiently solve this equation using classical computers (if so, why would we need quantum

computers after all!)
The issue then relies on (classically) Simulating Quantum ANNEaliNg o o o o e o mivun
[2] https://arxiv.org/pdf/1807.10750.pdf
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Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm

1: input: (M, N, S)
2: initialize all o; iIn S

“One may notice that since each spin glass may have a different
number of neighbors, then the threads will not be perfectly load

3. for sweep-id in {1, 2, ..., M} do balanced.” Host Device
4 for o; in S do Grid 1
5: o; + argmin(H (o;)) based on H;(c;) = ( Z Ji joj — h,!-) o slock 1 | Block 1 Block
6: end for j @ - (0,0) (1,0) (2,0)
7. randomly choose and flip IV spin glasses in S N 1
Block.- Block || Block
8:  decrease N o1 || o |1en
9: end for . o
Algorithm 2 GPU Simulated Annealing method for Ising @ .- ?ﬁdz ]
model i N B
input: (F},, S) Sl e
initialize ALL o; in S Y [Block
while F p > 0 do Thread | Thread | Thread | Thread | Thread i
for all o; € S in parallel do 0o 1d0 |20 GO |40
oy arganin(H () ol i P Pl
ﬂlp o; with pr Obablhty E p Thread | Thread | Thread | Thread | Thread
end for 02 (1.2 (22 |32 |42
reduce F},
end while [1] https://arxiv.org/pdf/1807.10750.pdf Cook, Zhao, Sato, Hiromoto
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GPU Performance

QO

Days Seconds
# edges | CPLEX cut | GPU cut (%accuracy) ] e
9999 9473 8884 (93.78%)
14999 13357 12776(95.65%) 100
24998 20206 19981(98.88%)
49995 35248 36228(100.29%) g 807
39998 33605 32914(97.94%) ;
59997 46371 46510(100.29%) *; 607
99995 70566 72009(102.04%) &
199990 | 128448 131930(102.71%) .
249995 176556 179391(101.60%) 20
374993 248505 255078(102.64%)
626988 392912 400540(101.94%) 0-
1 249 975 741 709 75 105 0( 10 1 . 25 %) [I] 5[';(}[] 1[](I}[](l 15(1![](} 2(};}(}0 256(}(} 30[11(}[] 35('}0[] -ID(I}O(}
Number of edges
e
7 N
N A Yl
- X
[1] https://arxiv.org/pdf/1807.10750.pdf
[2] https://mathworld.wolfram.com/TorusGridGraph.html
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Simulated Bifurcation Machine

“The method in [previous slide] ignores the data dependencies to implement parallel computation on fully
connected spin models. Since the modified algorithm in [previous slide] does not follow the mathematical

model that the Quantum Monte Carlo is based on, the output of the simulation could deviate from the
optimum.” N

How can we efficiently simulate guantum annealing? Hsp(Z.g.0) = gy,-z +V(E D)

We can take a classical approximation

. . . . ) ?
Equations model the bifurcation (Anil’s lecture) = ==
A B
2 5 15§ 45
15 0; §.5 = % = aHSB = Ay1
S oo 25 % ot 9yi
0s - s
” m
d : -15 flo° = N
0 50 100 150 200 -1.5-1-050051 15 ay! BHSB 2
R 15 : 5 §5§ ot - O ——[sz‘ —P(f)+A]X,-:+§0 Z]i,jx_f
Ei 05 A 25 :x 1 j:l
= OA < 2 =
= 05 A 16
X 1 m
=1 05 =
-15 h 1 -1.5 &l o
0 50 100 150 200 -15-1-050051 15
15 T 15§ i
ez ! 1 08 =
i‘\, 05 V. N05 g.i :;x
g_o_z g /. o 5 [1] Waidyasooriya, Hasitha, and Masanori Hariyama. "Highly-parallel FPGA accelerator for simulated quantum
-1 % g | B 2 annealing.” IEEE Transactions on Emerging Topics in Computing (2019).
TS0 50 10 150 20 -15-1-05005115 [2] Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating
‘ " adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.

(() EEleNCECIaIN 8(E CEOFI? ﬁ'fér | ’I T E P P E R l@ Universities Space Research Association 24


http://www.youtube.com/watch?v=R-SydOC3OIQ

Carnegie Mellon University

Simulated Bifurcation Machine

« Authors implemented algorithm in FPGA to
solve up to 20,000 nodes fully connected graphs

ing energy

Is

Computation time (ms)

Ave. of HNN GW-SDP
Best Ave. Worst| Best Ave. Worst
(ms) (ms) (ms) | (ms) (ms) (ms)
SB 0.047 0.061 0.074 |0.040 0.047 0.058
CIM |0.155 0.769 N/A [0.071 0.264 1.16
SA 2.64 6.80 N/A [210 320 7.15

ectrical & Computer
 ENGINEERING

Counts Counts

Counts

40
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10+
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0
40

30
20
10

SB 32,768
r0.5ms

CIM
5ms

32,459

SA

sogjs SOms

32,000 33,000
Cut value

« Authors implemented algorithm in CPU and
GPU to solve up to 1°000,000 nodes fully

connected graphs

A .8 }ss _O_}sa
100
)
P SO 01 S
S
pt 2
810} 8 ®
=
a
E 1 B ear e eeeannne
8

10-1

[1] Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating
adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.
[2] http://www.toshiba-sol.co.jp/en/pro/sbm/index.htm
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Complementary metal-oxide semiconductors (CMOS)

BLT[O] BLT[1) BLT[2Z] BLT[3] BLT[4] BLT[5]

N10 8LB[0] BLB[1] BLB[2] BLB[3] BLB[4] BLB[]
o o
WL0:12]
N0O oo | N‘IDDl NOD1 mml ooz ||| nto2
N11 N11 H HFHEF% WL[13:25]
WL Nﬂm]
drivers 4
NO1
NL[26:38]
r«mzu] mzul N021 N121| Nr::zzl N122
| 1=|| =||' 1=|| =||"
Control Local 10
decoder (sense amp, write driver, col. MUX)
3D Ising Model CMOS Static RAM (SRAM) Circuits

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS
annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

(() EEleNCECIaIN 8(E CEOFI? ﬁ'fér | ’I T E P P E R l@ Universities Space Research Association 26



Carnegie Mellon University

Complementary metal-oxide semiconductors (CMOS)

<« N _k—lInversion |—
Y
- ™~ —
N
P d] e d] w o
—=_ = 1 || B
I 2r = S msm SRS N
-——--"“"__d]___ A d] [ RO | 2
— = NFf——- 1 w LR | £
[][] d] — T —IND———— — g
‘x' | | y ND __1DT_| — J’\_
‘ | | _‘
\_ v NF D—
] SRAMcell
Each Spin has 5 neighbors (Up, Down, Spin 1mplementaJtr10n as logic gates

Right, Left, Front , ,
S ) Use low voltage to induce random errors in SRAM

and jump local minima

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS
annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.
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Complementary metal-oxide semiconductors (CMOS)

QO

1k-spin subarray
780 x 380 um?

Energy (x 10 000)

Electrical & Computer

ENGINEERING

Time (ms)

-
p

Actual Chip and Specs

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS

Carnegie Mellon University

Items Value
Number of spins |20k (80 x 256)
Process 65 nm
Chip arca 4x3=12 mm?
Areaof spin  |11.27 X 23.94 =270 um?
260k bits
Number of Spin value: 1 bit
SRAM cells Interaction factor: 2 bit X 5=10 bits
External magnetic coefficient: 2 bits
Memory [F 100 MHz

Interaction speed

100 MHz

Operating current
of core circuits
(1.1V)

Write: 2.0 mA
Read: 6.0 mA
Interaction: 44.6 mA

5ms (soo ooo steps ‘

4 ABC

10 ms (1 000 000 steps)

annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

TEPPER
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Complementary metal-oxide semiconductors (CMOS)

Easily Parallelizable and manageable

Spin
array

Spin

Delay array

Item This work
Spin *SRAM cell
P (digital bit)

Interaction
coefficient
& operation

* SRAM cell (digital bit)
= Logic circuits
(digital bit, asymmetry)

Scalability
(one device)

* Easy:
CMOS scaling
(over 10k spins)

Scalability
(multi chip)

* Easy:
digital IF can be used

Annealing

= CMOS circuits
(digital operation)

Operating
condition

* Room temperature
(300 K)

Q©

Electrical & Computer

ENGINEERING

Carnegie Mellon University

Same Idea also implemented in FPGA

(b)

/

)-?\-

2
)\
Nl

o
Sl

1st replica

é\!.

e

o=\

%

V4

| M-th replica

/

i
=S
i
K{ANY,

¥

King Unit cell useful for both spins
neea  aNd random number generation

()

(a) RNG
17b
spin spin spin
unit ] unit =] unit
it af of
spin spin spin
unit = unit N unit
ij T3 0 il
spin spin spin
unit [ unit [7] unit |-

Now available through H I I AC H I

Hitachi CMOS Hitachi CMOS
Annealer [15], [26] | Annealer [16], [26]
Maximum number of spins 61,952 6,400
Type of coupling King graph King graph
Number of couplings 0.37 million 0.4 million
Computation not mentioned 8-bit fixed point
Implementation ASIC FPGA

<y TEPPER

[1] Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve
combinatorial optimization problems with CMOS annealing."

[2] Okuyama, Takuya, Masato Hayashi, and Masanao Yamaoka. "An
Ising computer based on simulated quantum annealing by path

integral Monte Carlo method."

[3] https://annealing-cloud.com/en/about/cmos-annealing-

machine.html
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Playing with Hitachi's CMOS

Let’s go to this interactive interface of the CMOS device from Hitachi
https://annealing-cloud.com/en/play/ising-editor.htmi
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https://annealing-cloud.com/en/play/ising-editor.html

Carnegie Mellon University

Digital Annealers

CMOS Implementation of Ising solution method
Fully connected 1024 nodes
16-bit precision vs. 4-bit precision D-Wave

“For obtaining exact solutions of small-size problems, the
machine called “Digital Annealer’ may be the fastest so f.

[1] https://arxiv.org/pdf/1806.08815.pdf
[2] https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds

[3] Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adiabatic
bifurcations in nonlinear Hamiltonian systems.” Science advances 5.4 (2019): eaav2372.
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Digital Annealers

Algorithm 1 Simulated Annealing (SA)

Algorithm 2 The Digital Annealer’s Algorithm

1:
2
3
4
5:
6.
7
8

9:
10:
11:
12:

for each run do

initialize to random initial state

for each temperature do

for each MC sweep at this temperature do

for each variable do
propose a flip

end for
end for
update the temperature
end for
end for

Arbitrary start : initial_state <— an arbitrary state

—» |
- i lculated 5. for each run d
i ds not required to be ca - for each run do
Inltlal ﬁel d 3: initialize to initial_state

4 Ejfrger < 0
5:  for each MC step (iteration) do
6:

Pa “tri
. . Bo rallel-tr 1al if due for temperature update, update the temperature
if accepted, update the state and effective fields 0st acceptance pr Obablllty : for each variable j, in parallel do
8:

propose a flip using AE; — E greet

Q©

Electrical & Computer

ENGINEERING

9: if accepted, record
10: end for
H 11: if at least one flip accepted then
elpS S 12: choose one flip uniformly at random amongst them
baITI'e " 13: update the state and effective fields, in parallel
14: Eoffsct +«— 0
: else
16: E et < Eoffser + offset_increase rate
17: end if
18:  end for
19: end for

[1] https://arxiv.org/pdf/1806.08815.pdf
[2] https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
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Parallel Tempering

Q©

Algorithm 1 Simulated Annealing (SA)

(PT+ICM)

Algorithm 3 Parallel Tempering with Isoenergetic Cluster Moves

between the replicas

1: for each run do 1: initialize all replicas with random initial states

2 initialize to random initial state 2: for each MC sweep do

3 for each temperature do 3:  for each replica, for each variable do

4 for each MC sweep at this temperature do 4: propose a flip

5: for each variable do 5: if accepted, update the state and effective fields
6: propose a flip 6: end for

7 if accepted, update the state and effective fields 7:  for each pair of sequential replicas do

8: end for 8: propose a replica exchange

9: end for 9: if accepted, swap the temperatures
10: update the temperature 10:  end for
11:  end for 11:  perform ICM update, swapping the states of a cluster of variables that
12: end for

have opposite states in the two replicas; update the states and the effective

fields for both replicas

Instead of having a single state you have several replicas 12: end for
Then the flips can be done among replicas
It can be implemented in the Digital Annealer

Additionally: There can be cluster updates (flip more than one spin if they are “connected”)
o Similar to Anil’s intuition on the Swendsen-Wang Algorithm

Electrical & Computer

ENGINEERING

https://arxiv.org/pdf/1806.08815.pdf

https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds

<y TEPPER
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https://en.wikipedia.org/wiki/Swendsen%E2%80%93Wang_algorithm
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Digital Annealing v Simulated Annealing v Parallel Tempering

Q©

Fully connected instances

104
10%E
10%L
100 7.
o 100k
F
F
101
10_2—” D DA (50th) ® @ DA (80th)
‘ B sA (50th) B s xml)
1073k 33 PT (50th) T T PT (30th)
PTDA (50th) PTDA (80th)
1074 1 I L 1 1 1
064 144 256 576 676 T84 900 1024

N

Digital Annealer Wins
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TTS (s)

Sparse instances

2D-Bimodal

10*

10°

10~4Ls
5

DA Digital Annealer
SA Simulated Annealing
PT(+1CM) Parallel Tempering (+Isoenergetic

Cluster Moves)

PTDA Parallel Tempering Digital Annealer

76 676 T84 900 1024

TTS (s)

2D-Sparse

(b)

g

T DA (50th) B4

(B0 SA (50th) lB ﬂ?

F9 pr+icM (5mh) B P F
PT

g X )
64 144 256 100 576 676

N

Parallel Tempering Wins

[1] https://arxiv.org/pdf/1806.08815.pdf

[2] S. V. Isakov, I. N. Zintchenko, T. F. Rennow, and M. Troyer, Optimized simulated annealing for Ising spin glasses,

Comput. Phys. Commun. 192, 265 (2015)

<y TEPPER
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Digital Annealers

o
FUJITSU

Quantum Computing Challenge Series

Quantum Computing Challenge Series - Max Cut Marathon Match 511,500
Purse

o
o
-]

Ended Apr 04  Marathon Match

Quantum Computing Learning Challenge #3 - Max Cut $250

=

o

a
1

Ended AUQO4 Python DataScience Other

Quantum Computing Learning Challenge 2 - Scheduling $250

=

a

a
2

Ended Feb 28  Python  Data Science  Other

Quantum Computing Learning Challenge #1 - Solve Sudoku Instantly 5250

=

a

-]
-

Ended Feb 14  Algorithm  Python  Data Science  +1

[1] https://arxiv.org/pdf/1806.08815.pdf
[2] https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
[3] https://tc3-japan.github.io/DA _tutorial/index.html
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Digital Annealer v Application-specific integrated circuit v FPGA

v GPU

Fujitsu Digital Hitachi CMOS Hitachi CMOS h
is work
Annealer [25] Annealer [15], [26] | Annealer [16], [26]
Maximum number of spins 8192 61,952 6,400 32,768
Type of coupling Total coupling King graph King graph Total Coupling
Number of couplings 67 million 0.37 million 0.4 million 1 billion
Computation 64-bit fixed-point not mentioned 8-bit fixed point 32-bit floating-point
Implementation ASIC ASIC FPGA 2-FPGA connected via fiber
Category | FPGA 2, QSFP 1 [ U accele.rator
Speed-up >y & lementation
Accuracy A "“E“i;" ia Blation
Problem size 2y~
Power consumption
Power-efficiency
Availability m PCs to supercomputers
Programmability DA, OpenCL, OpenAcc, etc.
Compilation time [ Ih a minute
Design time ly small

[1] Waidyasooriya, Hasitha Muthumala, and Masanori Hariyama. A GPU-Based Quantum Annealing Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism."
[2] Waidyasooriya, H.M., Hariyama, M., Miyama, M.J. et al. OpenCL-based design of an FPGA accelerator for quantum annealing simulation.
[3] Waidyasooriya, Hasitha Muthumala, and Masanori Hariyama. “Highly-Parallel FPGA Accelerator for Simulated Quantum Annealing”
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Coherent Ising Machines

Pum

pu|s§ SHG Signal pulses
pulse # #1

-&* SHG

PPLN
waveguide PSA
' ' OPA Output
Ring cavity coupler

Injection
coupler

NIPPON TELEGRAPH AND TELEPHONE
CORPORATION
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NEWS: 100,000 Spins

x107
—— SA (0.698 s)
CIM (593 ps; 24 circulations)
1.2 Greedy (10,759,955) :
i BN CIM (schedule 2)
A 779.5-nm pump pulses S == CIM (schedule 3)
25 # SA (1000 ms)
. ] 100 B SA (500 ms)
Injection pulses s
J P! w ‘
LLL, Push-pull gos8 p
D" (9]
Coupler 2 Coupler 1 : E
: Yo o 2
: RO 0.6 €
: Temperature- e — ‘ é ? é 10
: controlled box ! 1
; =
: ; : 0.4 /
- i | Matrix 1 o
Fiber calculation |
0.2
1
B
Schedule 1 Schedule 2 Schedule 3 0.0
. One calculation . Gne calculation N [ P — 10 10> 10* 103 102 107! 10° 10! 10? 1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200
E E g Time (s) MAX CUT score x107
Z 08 =08 =08
E E E Fig. 3. MAX CUT score as a function of computation time obtained with the  Fig. 6. Histograms of MAX CUT score with CIM and SA. The vertical dashed line
5 o gu ’ §° ¢ CIM (orange line) and SA (blue line). The data points exhibit the scores evaluated shows the SG score (10,759,955).
goe goe g oe at the intermediate steps in the CIM and SA computation. The dotted line denotes
5 = s J_‘_,_,—'_l_r the score obtained with SG (10,759,955).
E 02 Eo2 Eo2
2 2 2
00 00 00 SCIENCE ADVANCES | RESEARCH ARTICLE
0 200 400 600 800 1000 o 200 400 600 80O 1000 0 200 400 600 800 1000
Circulations Circulations Circulations

COMPUTER SCIENCE

100,000-spin coherent Ising machine

Toshimori Honjo'#, Tomohiro Sonobe?, Kensuke Inaba', Takahiro Inagaki', Takuya Ikuta',
Yasuhiro Yamada', Takushi Kazama®, Koji Enbutsu®, Takeshi Umeki?, Ryoichi Kasahara®,
Ken-ichi Kawarabayashi?, Hiroki Takesue'*
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Alternatives available

QO
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Calculation method

Maximum number of bits

Coefficient parameter

Combined graph

Total number of
combined conversion

bits

APl endpoint

Fixstars

Optigan

GPU

Over

100,000

Digital (32
/ 64bit)

Fully

combined

65,536

Fixstars

<y TEPPER

D-Wave
2000Q

Quantum

annealing

2,048
(16x16x8)

Analog
(about
5bit)

Chimera

graph

64

D-Wave
Cloud

Hitachi
CMOSs

Annealing

Digital

circuit
61,952

(352x176)

Digital (3bit)

King Graph

176

Annealing

Cloud Web

Fujitsu
Digital

Annealer

Digital

circuit

1,024/
8,192

Digital
(16/64

bit)

Fully

combined

1.024/
8,192

DA Cloud

Carnegie Mellon University

Toshiba
SBM

GPU

10,000

Digital
(32bit)

Fully

combined

1,000

AWS
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Playing with several platforms

You can check one of the integrated software stack for several of these platforms developed in Japan at

Translated version (but you cannot run it)
https://colab.research.google.com/github/bernalde/QuiPML/blob/master/notebooks/Notebook%208%20-
%20Amplify%20Tutorials.ipynb
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https://amplify.fixstars.com/en/
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%208%20-%20Amplify%20Tutorials.ipynb

Playing with several platforms

Explore quantum cloud solutions available on Azure Quantum

Carnegie Mellon University

Azure Quantum assembles and curates some of the most compelling and diverse quantum resources available today from industry leaders—including

optimization and quantum hardware solutions—for developers and customers across all industries.

Azure Quantum enables you to learn, build, and deploy impactful solutions at scale, helping you harness quantum computing and benefit from the

latest innovations.

QUANTUM COMPUTING

Honeywell

Honeywell quantum solutions

Trapped-ion system with high-fidelity, fully

connected qubits, and the ability to perform mid-

circuit measurement.

OPTIMIZATION

1QBit

1Qloud

Connecting intractable industry problems to
innovative solutions.

QUANTUM COMPUTING
) IONQ

IONQ Trapped-ion quantum computer

Dynamically reconfigurable system for up to 11
fully connected qubits that lets you run a two-
qubit gate between any pair.

OPTIMIZATION

B Microsoft

Microsoft QIO

Ground-breaking optimization algorithms inspired
by decades of quantum research.

https://azure.microsoft.com/en-us/services/quantum/#features

QO

Electrical & Computer

ENGINEERING

<y TEPPER

QUANTUM COMPUTING

(]f‘i

Quantum Circuits, Inc.

Fast and high-fidelity system with powerful real-
time feedback to enable error correction.

OPTIMIZATION

TOSHIBA

Toshiba SBM

Toshiba Simulated Bifurcation Machine is a GPU-
powered ISING machine that solves large-scale
combinatorial optimization problems at high
speed.
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